This is the first time that either substance has been isolated from the Eucalyptus speciesmentioned.

LITERATURE CITED

- 1. A. M. Aliev, and I. S. Movsumov, Khim. Prir. Soedin., 399 (1976).
- 2. A.M. Aliev, I. S. Movsumov, and S. V. Serkerov, First Congress of Azerbaidzhan Pharmacists. Abstracts of Lectures [in Russian], Baku (1976), p. 148.
- 3. I. S. Movsumov and A. M. Aliev, Khim. Prir. Soedin., 389 (1981).
- 4. I. S. Movsumov, A. M. Aliev, and Yu. B. Kerimov, Khim. Prir. Soedin., 265 (1984).
- 5. L. Cagliotti, G. Cainelli, and F. Minutilli, Gazz. Chim. Ital., 91, 1387 (1961).
- 6. R. Caputo, L. Mangoni, P. Monaco, and P. Previtera, Phytochemistry, 13, 2825 (1974).
- 7. A. A. Savina, T. A. Sokol'skaya, and D. A. Fesenko, Khim. Prir. Soedin., 113 (1983).

STEROID COMPOUNDS OF MARINE SPONGES.

V. 24ξ , 25-DIMETHYLCHOLEST-5-ENE- 2β , 3α -DIOL DI(AMMONIUM SULFATE) — A NEW POLYHYDROXYLATED STEROID FROM A SPONGE Halichondria sp.

T. N. Makar'eva, L. K. Shubina,

UDC 547.92

A. I. Kalinovskii, and V. A. Stonik

Continuing an investigation of the steroid composition of sponges of the family <code>Halichondriidae</code> [1-4], from an aqueous extract of a sponge <code>Halichondria sp.</code>, collected in the northwestern littoral of the island of Madagascar in <code>December</code>, 1981 (Scientific-Research Ship "Professor Bogorov"), by column chromatography on <code>Polikhrom-1</code> (water \rightarrow 50% ethanol) and silica gel (CHCl₃-C₂H₅OH-H₂O (20:20:1)) we have isolated a previously unknown sulfated steroid (Ia); yield 0.03%, mp 205-207°C, [α]²⁰_D - 14.2° (c 0.12; pyridine). IR spectrum: ν ^{KBr}_{max} 1236 cm⁻¹ (SO₃). Mass spectrum (m/z): 394 (M⁺ - 2NH₄HSO₄); 253, 211.

The acid hydrolysis (9% HCl, 90°C, 1.5 h) of (Ia) gave sulfuric acid and a diol (Ib) with mp 257-260°C, [α] $_{\rm D}^{\rm 20}$ - 32° (c 0.05; ethanol). Mass spectrum (m/z): 430 (M⁺), 415, 412 (M⁺ - H₂0), 397, 379, 253, 211.

The acetylation of (Ib) with a mixture of acetic anhydride and pyridine (1:1) led to a diacetate (Ic) with mp 189-191°C. Mass spectrum (m/z): 454 (M⁺ - CH₃COOH), 439, 412, 394 (M⁺ - 2CH₃COOH), 379, 253, 211.

The structure of the side chain of the compound obtained (Ia) followed from a comparison of the high-resolution ^{1}H NMR spectra of (Ia-c) with the corresponding spectra of halistanol sulfate, halistanol, and halistanol triacetate. Almost complete coincidence of the signals was observed for the $CH_{3}-28$ and the $CH_{3}-26$, -27, and -29 groups, and a small difference for the $CH_{3}-18$, and $CH_{3}-21$ groups (-0.02 to 0.03 ppm) [2, 5].

From this it was concluded that the structures of the side chains for (Ia-c) and halistanol sulfate were identical.

The presence of fragment (II) in the steroid nucleus of compounds (Ia-c) followed from double-resonance experiments with differential decoupling for (Ib). Starting from the CH_3-19

Pacific Ocean Institute of Bioorganic Chemistry, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 272-273, March-April, 1985. Original article submitted August 23, 1984.

signal (1.62 ppm) in the spectrum of (Ib), by double resonance multiplets were detected for the protons H-la [2.11 ppm, dd, J = 14.1 Hz (la,le); 3.6 Hz (la,2e); and 0.5 Hz (la,19)] and H-le [2.22 ppm, ddd, J = 14.1 Hz (le,la); 3.1 Hz, (le,2e); and 0.8 Hz (le,3e)].

The simultaneous irradiation of both multiplets, H-2e and H-3e (4.45 and 4.51 ppm), converted the signals of the H-la,e protons into an AB system with broadened H-la signals and revealed the signals of the protons H-4a [3.43 ppm, dm, J = 14.2 Hz (4a,4e)] and H-4e (2.42 ppm, ddd, J = 14.2 Hz (4e,4a); 0.9 Hz (4e,2e); and 2.7 Hz (4e,3e)]. The H-4e signal was converted on double resonance into a doublet (J = 14.2 Hz). In its turn, the decoupling of H-4e left the H-6 multiplet (5.69 ppm, dt, J = 5.2, 1.5 and 1.5 Hz) unchanged, while H-4e decoupling converted it into dd (J = 5.2 and 1.5 Hz). In the H-4a and H-4e multiplets the geminal constant had disappeared completely.

Below, we give the details of the ^1H NMR spectra of compounds (Ia-c) (solvents: for (Ia and b) - C₅H₅N; for (Ic) - CDCl₃; δ , TMS - 0; Bruker WM-250 spectrometer):

Com- pound	H-2	H- 3	H- 6	CH ₃ -18	C H ₃ -19	C H ₃ -21	C H ₃-28	C H ₃ -26, 27, 29
Ia	5.60	5.63m	5 38m	0. 64s	1.32s	0.97 đ	0.86d	0.87s
Ib	4.45	4,51m	$5.60 \mathrm{m}$	0.71s	1.62s	1.00.d	0.86d	0.88s
Ic	4,87	4,95m	5,34 m	0,68s	1,11s	0,94 d	0,81d	0,85s

Atomic absorption analysis showed the absence of sodium and potassium ions from (Ia). The counter-ion in the sulfate groups was determined as ammonium (positive Nessler test). Thus, the structure of (Ia) has been determined as 24ξ ,25-dimethylcholest-5-ene-2 β ,3 α -dioldi-(ammonium sulfate).

Compound (Ia) was possibly an artefactual product formed as the result of the degradation of halistanol sulfate during chromatography on silica gel.

LITERATURE CITED

- 1. T. N. Makar'eva, A. I. Kalinovskii, T. I. Zhakina, and V. A. Stonik, Khim. Prir. Soedin., 114 (1983).
- 2. T. N. Makarieva, L. K. Shubina, A. I. Kalinovsky, and V. A. Stoník, and G. V. Elyakov, Steroids, 42, 267 (1983).
- 3. L. K. Shubina, T. N. Makar'eva, and V. A. Stonik, Khim. Prir. Soedin., 464 (1984).
- 4. L. K. Shubina, T. N. Makar'eva, A. I. Kalinovskii, and V. A. Stonik, Khim. Prir. Soedin., 232 (1985).
- 5. N. Fusetani, S. Matsunaga, and S. Konosu, Tetrahedron Lett., 22, 1985 (1981).